CET SELECTION SHEET - PRESSURISED

TABLE 1 **Expansion Coefficient**

> 0.0002 0.0004

0.0018

0.0044

0.0079

0.0121 0.0171

0.0228

0.0290

0.0359

0.0435

0.0515

0.0603

ΔT(°C) 0

> 10 20

30

40

50

70

80

90

110

120

ENQ. No	
ENQ. Date	
Party Name	
Project Name	
Details	Required as per data sheet

Tank Volume (LTS) = $\frac{C \times e}{1 - \frac{Pi}{Pf}}$ + 10% ______ No. 1

Water volume in all CHW pipes = -Water volume in all CHW pipes = _____ LTS +Extra for heat exchangers / coils (25%) = _____ LTS C =

Total water capacity in system = _

 Δ °C = Difference of minimum to maximum water temperature.

Expansion coefficient _____

$$Pi = \left(\frac{h_1}{10} + 0.5\right)$$
 Bar +1Bar = _____(Absolute Pressure)Bar No. 2

h₁ = Static Head/Building height in meter

$$Pf = \left(\frac{\text{Max Design Pressure}}{\text{(PN10/PN16)}} \right) - H - \frac{h_2}{10} - 1 \text{ Bar} + 1 \text{Bar} = \underline{\qquad} \text{(Absolute Pressure)} \text{Bar No. 3}$$

h₂ = Head of water below tank in meters

H = Secondary Pump Head in bar

Notes :- 1. Pf should never be more than two times of Pi.

- 2. For chilled water only applications consider ΔT as 30°C
- 3. For hot water applications consider higher ΔT as per difference of min & max hot water temperature.

For Expansion Tank in service floor

 $h_2 = 0$

Pumping head in bar h₁ = Head of water above Exp. Tank in meters Primary/Secondary Pump h_2 = Head of water below Exp. Tank in meters h₁ = Actual (Static Head) h₂ = Actual

For Expansion Tank at terrace Expansion PSU Primary/Secondary $h_1 = 5m \text{ (Always)}$

Calculated Volume of expansion tank(Gas Based)

$$C=$$
 LTS $h_{1=}$ Meters $\Delta^{\circ}C=$ C $H=$ Bar $h_{2=}$ Meters

$$Pi = \left(\frac{10}{10} + 0.5\right) + 1 Bar = Absolute(Bar) No. 2$$

Pf =
$$\binom{10}{10} - \frac{\binom{1}{10}}{10} - 1$$
Bar + 1 Bar = _______Absolute(Bar) No. 3

Tank Volume LTRS =
$$\frac{C \times C}{1 - \frac{Pi}{Pf}} + 10\% (Safety) =$$
______LTRS No. 1

Selected model of tank

Prepared By: _____

Date: _____